132.数学统计学与力学学院
电子封装技术与可靠性研究所
电子封装技术与可靠性研究所
代岩伟
发布时间:2024-04-02 发布者: 浏览次数:

基本情况

代岩伟,男,博士、教授、博导。2018年博士毕业于清华大学力学专业,获工学博士学位。2018年进入北京工业大学机电学院工作。2020年7月至2023年12月为北京工业大学材料与制造学部副教授。2023年12月至今为北京工业大学数学统计学与力学学院力学系电子封装技术与可靠性研究所教授、博导。入选2020-2022年度北京市科协青年人才托举工程。担任IEEE国际电子封装会议技术委员会成员、《应用力学学报》和《物理测试》青年编委等。与多个国际、国内相关领域研究团队建立了稳定的合作关系。担任近二十份国内外知名期刊的审稿人。近五年先后培养/协助培养毕业博士2名、毕业硕士7名,毕业生大多进入集成电路相关领域骨干企业工作。截至2024年2月指导/协助指导的研究生中获得IEEE国际电子封装技术大会最佳学生论文奖2人,获得第三届全国集成微系统建模与仿真学术交流会优秀论文一等奖1人,硕士/博士研究生国家奖学金获得者3人,北京市优秀毕业生和北京工业大学硕士优秀学位论文获得者1人。

研究方向

主要研究方向包括电子封装技术中的关键力学问题、先进制造中的关键力学问题、高温结构及装备完整性以及机器学习方法与力学和集成电路封装可靠性领域融合等。欢迎对集成电路领域电子封装技术与可靠性、固体力学、断裂力学以及机器学习有学习兴趣,且人品正直、有学术追求的同学报考,鼓励研究生在学期间参加国际会议和国际交流。硕士招考方向:①学硕-02固体力学、04工程力学(数学统计学与力学学院招生);②专硕-04高端装备强度与动态分析(机械与能源工程学院招生)。博士招考方向:力学。更多课题组最新研究动态,请前往以下网站查阅。

ResearchGate:https://www.researchgate.net/profile/Yanwei-Dai/research

个人学术网站:https://www.x-mol.com/groups/yanweidai

科研项目

主持多项集成电路行业头部企业技术研发课题。近五年主持的主要纵向科研项目如下:

[1]国家自然科学基金重点项目,批准号:12332005,在研,参与(主持北工大合作部分)。

[2]航空科学基金,批准号:2022Z057075001,在研,主持。

[3]国家自然科学基金面上项目,批准号:12272012,在研,主持。

[4]国家自然科学基金青年项目,批准号:11902009,结题,主持。

[5]北京市自然科学基金青年项目,批准号:2204074,结题(优秀),主持。

[6]北京市教育委员会科技计划一般项目,批准号:KM202010005034,结题,主持。

[7]中国博士后基金面上项目,编号:2019M650403,结题,主持。

[8]朝阳区博士后经费资助项目,编号:2019ZZ-47结题,主持。

代表性研究成果

已在国际力学领域和集成电路封装领域权威期刊发表SCI论文60余篇,其中第一作者/通讯作者SCI论文40余篇。部分代表性的期刊论文如下:

(1)固体力学和断裂力学方向:

[1]Kong WC,Dai YW*, Liu YH*, Out-of-plane effect on the sharp V-notch tip fields in power-law creeping solids: A three-dimensional asymptotic analysis,International Journal of Solids and Structures, 2022, 236–237, 111352.

[2]Dai YW, Qin F, Liu YH, Chao YJ. On the second order term asymptotic solution for sharp V-notch tip field in elasto-viscoplastic solids.International Journal of Solids and Structures, 2021, 217–218, 106-122.

[3]Dai YW, Qin F, Liu YH, Berto F, Chen HF. Characterizations of material constraint effect for creep crack in center weldment under biaxial loading.International Journal of Fracture2022, 234, 177–193.

[4]Dai YW, Luca Susmel, Qin F. Sharp V-notches in viscoplastic solids: Strain energy rate density rule and fracture toughness.Fatigue & Fracture of Engineering Materials & Structures, 2021; 44:28–42.

[5]Dai YW, Liu YH, Qin F, Chao YJ, Chen HF. Constraint modified time dependent failure assessment diagram (TDFAD) based on C(t)-A2(t) theory for creep crack.International Journal of Mechanical Sciences, 2020, 165, 105193.

[6]Dai YW, Liu YH, Qin F, Chao YJ, Berto F. Estimation of stress field for sharp V-notch in power-law creeping solids: An asymptotic viewpoint.International Journal of Solids and Structures, 2019, 180-181, 189-204.

[7]Dai YW, Liu YH, Chao YJ. Higher order asymptotic analysis of crack tip fields under mode II creeping conditions.International Journal of Solids and Structures, 2017, 125, 89-107.

[8]Dai YW, Liu DH, Liu YH. Mismatch constraint effect of creep crack with modified boundary layer model.Journal of Applied Mechanics-Transactions of the ASME, 2016, 83(3), 031008.

(2)三维集成电路封装可靠性和功率器件可靠性方向:

[1]Wei JH,Dai YW*, Qin F. Inverse identification of cohesive zone parameters for sintered nano-silver joints based on dynamic convolution neural network.Engineering Fracture Mechanics, 2023, 292, 109651.

[2]Dai YW, Zhao LB, Zan Z, Qin F. Mode I fracture of sintered nano-silver doped with nickel-coated multiwall carbon nanotube.Materials Science in Semiconductor Processing,2024, 174, 108171.

[3]Zhang M, Qin F*, Chen S,Dai YW*, Jin Y, Chen P, An T, Gong YP, Effect of capped Cu layer on protrusion behaviors of through silicon via copper (TSV-Cu) under double annealing conditions: Comparative study,IEEE Transactions on Device and Materials Reliability, 2023, 23(1): 89-98.

[4]Dai YW, S Zhao, F Qin, T An, YP Gong, P Chen. Shear fracture resistance enhancement through micropatterning on copper substrate for sintered nano silver joints,International Journal of Adhesion and Adhesives, 2023, 125, 103422.

[5]Zhang M, Qin F*, Chen S*,Dai YW*, Chen P, An T, Protrusion of through silicon via (TSV) copper with double annealing processes,Journal of Electronic Materials, 2022, 51, 2433–2449.

[6]Dai YW, Zhi Zan, Shuai Zhao, F Qin. Mode II cohesive zone law of porous sintered silver joints with nickel coated multiwall carbon nanotube additive under ENF test,Theoretical and Applied Fracture Mechanics, 2022, 121, 103498.

[7]Qin F, Zhao S,Dai YW*, Hu Y, An T, Gong Y. Mud-cracking effect of sintered silver layer on quantifying heat transfer behavior of SiC devices under power cycling: Voronoi tessellation model,IEEE Transactions on Components, Packaging and Manufacturing Technology, 2022, 12(6), 964-972.

[8]Qin F, Zhao S,Dai YW*, Liu L, An T, Chen P, Gong Y. Indentation tests for sintered silver in die-attach interconnection after thermal cycling.Journal of Electronic Packaging- Transactions of the ASME, 2022, 144(3): 031012.

[9]Zhao S,Dai YW*, Qin F*, Li Y, Liu L, Zan Z, An T, Chen P, Gong Y, Wang Y, On mode II fracture toughness of sintered silver based on end-notch flexure (ENF) test considering various sintering parameters,Materials Science and Engineering A, 2021, 823, 141729.

[10]Qin F, Zhao S,Dai YW*, Yang MK, Xiang M, Yu DQ. Study of warpage evolution and control for six-side molded WLCSP in different packaging processes,IEEE Transactions on Components, Packaging and Manufacturing Technology. 2020, 10(4): 730-738.

[11]Qin F, Hu YK,Dai YW*, An T, Chen P, Gong YP, Yu HP. Crack effect on the equivalent thermal conductivity of porously sintered silver.Journal of Electronic Materials, 2020, 49, 5994–6008.

[12]Qin F, Hu YK,Dai YW*, Chen P, An T. Evaluation of thermal conductivity for sintered silver considering aging effect with microstructure based model.Microelectronics Reliability, 2020, 108:113633.

[13]Dai YW, Zhang M, Qin F, Chen P, An T. Effect of silicon anisotropy on interfacial fracture for three dimensional through-silicon-via (TSV) under thermal loading,Engineering Fracture Mechanics, 2019, 209, 274-300




上一条:陈沛
下一条:公颜鹏
132.数学统计学与力学学院

版权所有 © 北京工业大学 京公网安备:110402430086  京ICP备:14043795号-2   COPYRIGHT © BEIJING UNIVERSITY OF TECHNOLOGY